Flight test report: EN

Manufacturer	Ozone Gliders
Address	2, Queens Drive
	LA46LN .
	UK
Representative	None
Glider model	Buzz Z4 S
Trimmer	no

Certification number	PG_0641.2012
Date of flight test	27.02. 2013

Place of test	Villeneuve
Classification	B

Test pilot Fukuoka Seiko
Harness Sup' Air - Altix M
Total weight in flight (kg) 65

Thurnheer Claude
Sup' Air - Evasion M 85

1. Inflation/Take-off A
Rising behaviour
Special take off technique required
2. Landing

| Special landing technique required | No | A | No |
| :--- | :--- | :--- | :--- | :--- |
| 3. Speed in straight flight | A | | |
| Trim speed more than $30 \mathrm{~km} / \mathrm{h}$ | Yes | A | Yes |
| Speed range using the controls larger than $10 \mathrm{~km} / \mathrm{h}$ | Yes | A | Yes |
| Minimum speed | Less than $25 \mathrm{~km} / \mathrm{h}$ | A | Less than $25 \mathrm{~km} / \mathrm{h}$ |

4. Control movement

 AMax. weight in flight up to 80 kg
Symmetric control pressure / travel
Increasing / greater than 55 cm A not available 0

Max. weight in flight 80 kg to 100 kg

Symmetric control pressure / travel	not available	0	Increasing / greater than 60 cm

Max. weight in flight greater than 100 kg
Symmetric control pressure / travel

Dive forward angle on exit	Dive forward less than 30°	A	Dive forward less than 30°
Collapse occurs	No	A	No

6. Pitch stability operating controls during accelerated

A
flight

Collapse occurs	No	A	No	A
7. Roll stability and damping	A			
Oscillations	Reducing	A	Reducing	A
8. Stability in gentle spirals	A			
Tendency to return to straight flight	Spontaneous exit	A	Spontaneous exit	A
9. Behaviour in a steeply banked turn	A			
Sink rate after two turns	Up to $12 \mathrm{~m} / \mathrm{s}$	A	$12 \mathrm{~m} / \mathrm{s}$ to $14 \mathrm{~m} / \mathrm{s}$	A
10. Symmetric front collapse	A			
Entry	Rocking back less than 45°	A	Rocking back less than 45°	A
Recovery	Spontaneous in less than 3 s	A	Spontaneous in less than 3 s	A
Dive forward angle on exit / Change of course	Dive forward 0° to $30^{\circ} /$ Keeping course	A	Dive forward 0° to $30^{\circ} /$ Keeping course	A
Cascade occurs	No	A	No	A
With accelerator				
Entry	Rocking back less than 45°	A	Rocking back less than 45°	A
Recovery	Spontaneous in less than 3 s	A	Spontaneous in less than 3 s	A

Dive forward angle on exit / Change of course
Cascade occurs
11. Exiting deep stall (parachutal stall)

Deep stall achieved
Recovery
Dive forward angle on exit
Change of course
Cascade occurs
12. High angle of attack recovery

Recovery
Cascade occurs

13. Recovery from a developed full stall

Dive forward angle on exit
Collapse
Cascade occurs (other than collapses)
Rocking back
Line tension
14. Asymmetric collapse

With 50\% collapse
Change of course until re-inflation / Maximum dive forward or roll angle
Re-inflation behaviour
Total change of course
Collapse on the opposite side occurs
Twist occurs
Cascade occurs
With 75% collapse
Change of course until re-inflation / Maximum dive forward or roll angle
Re-inflation behaviour
Total change of course
Collapse on the opposite side occurs
Twist occurs
Cascade occurs
With 50% collapse and accelerator
Change of course until re-inflation / Maximum dive forward or roll angle
Re-inflation behaviour
Total change of course
Collapse on the opposite side occurs
Twist occurs
Cascade occurs
With 75% collapse and accelerator
Change of course until re-inflation / Maximum dive forward or roll angle
Re-inflation behaviour
Total change of course
Collapse on the opposite side occurs
Twist occurs No
Cascade occurs No
A

No
A

No
A

No

B

No
No
No

No
No
No

No
No
No

No

Dive forward 0° to $30^{\circ} /$ Entering A Dive forward 0° to $30^{\circ} /$ Keeping
A course
A No
A

Yes A Yes A
Spontaneous in less than 3 s
Dive forward 0° to 30°
A Spontaneous in less than 3 s
A Dive forward 0° to 30°
A Changing course less than 45°
Changing course less than 45°

Spontaneous in less than 3 s

Dive forward 0° to 30°
No collapse

Less than 45°
Most lines tight

Less than 90° / Dive or roll angle
0° to 15°
Spontaneous re-inflation
Less than 360°
90° to 180° / Dive or roll angle 15° to 45°

Spontaneous re-inflation
Less than 360°
90° to 180° / Dive or roll angle 15° to 45°

Spontaneous re-inflation
Less than 360°
90° to 180° / Dive or roll angle
15° to 45°
Spontaneous re-inflation
Less than 360°
15. Directional control with a maintained asymmetric A collapse

Able to keep course	Yes
180° turn away from the collapsed side possible in 10 s	Yes
Amount of control range between turn and stall or spin	More than 50% of the symmetric control travel

A Yes A
A Yes A
A More than 50% of the symmetric A control travel

16. Trim speed spin tendency	A			
Spin occurs	No	A	No	A
17. Low speed spin tendency	A			
Spin occurs	No	A	No	A
18. Recovery from a developed spin	A			
Spin rotation angle after release	Stops spinning in less than 90°	A	Stops spinning in less than 90°	A
Cascade occurs	No	A	No	A
19. B-line stall	A			
Change of course before release	Changing course less than 45°	A	Changing course less than 45°	A
Behaviour before release	Remains stable with straight span	A	Remains stable with straight span	A
Recovery	Spontaneous in less than 3 s	A	Spontaneous in less than 3 s	A
Dive forward angle on exit	Dive forward 0° to 30°	A	Dive forward 0° to 30°	A
Cascade occurs	No	A	No	A
20. Big ears	A			
Entry procedure	Dedicated controls	A	Dedicated controls	A
Behaviour during big ears	Stable flight	A	Stable flight	A
Recovery	Spontaneous in less than 3 s	A	Spontaneous in less than 3 s	A
Dive forward angle on exit	Dive forward 0° to 30°	A	Dive forward 0° to 30°	A
21. Big ears in accelerated flight	A			
Entry procedure	Dedicated controls	A	Dedicated controls	A
Behaviour during big ears	Stable flight	A	Stable flight	A
Recovery	Spontaneous in less than 3 s	A	Spontaneous in less than 3 s	A
Dive forward angle on exit	Dive forward 0° to 30°	A	Dive forward 0° to 30°	A
Behaviour immediately after releasing the accelerator while maintaining big ears	Stable flight	A	Stable flight	A
22. Behaviour exiting a steep spiral	A			
Tendency to return to straight flight	Spontaneous exit	A	Spontaneous exit	A
Turn angle to recover normal flight	Less than 720°, spontaneous recovery	A	Less than 720°, spontaneous recovery	A
Sink rate when evaluating spiral stability [m/s]	12		17	
23. Alternative means of directional control	A			
180° turn achievable in 20 s	Yes	A	Yes	A
Stall or spin occurs	No	A	No	A
24. Any other flight procedure and/or configuration described in the user's manual	0			
Procedure works as described	not available	0	not available	0
Procedure suitable for novice pilots	not available	0	not available	0
Cascade occurs	not available	0	not available	0
25. Comments of test pilot Comments				

